ENGR290: Renewable Energy

Homework 2: Time Value of Money

Assigned: May 22, 2014
Due: May 29, 2014

Notes:

Time Value of Money

In order to correctly compare the value of various alternatives, we must have a method to convert the monetary value of present and future costs into a common value that can be directly compared. For example, $\$ 1000$ today does not have the same value as $\$ 1000$ in 10 years due to interest rates. If you are building a renewable energy system and expect investors to invest money into it, you must prove that it will give them a good return on their investment. This is what time value of money calculations address.

Time value of money can be a very complex field of study, but for our purposes a simple approach is often sufficient. The Present Value Analysis procedure is a way to convert all the expenses or incomes of a project into their Present Day value.

A very useful tool for this analysis is the Cash Flow Diagram. It is simply a timeline that shows positive (income) and negative (expenses) cash flow on the year in which that cash flow occurs. For example, Figure 1 shows a cash flow diagram for a car loan. The bank pays you $\$ 20,000$ at present day and you pay $\$ 6000$ each year for 5 years. Another example is in Figure 2 where you buy a solar system today for $\$ 10,000$ and it offsets $\$ 1200$ per year of your electric bill, but you have to replace the inverter for $\$ 2,000$ after 5 years.

Figure 1: Cash flow for a loan

Figure 2: Cash flow for a simple PV system
So the question that a time value of money calculation answers is: What is the present day value of a cash flow? It can be done in several simple steps:

1. Identify the interest rate to be used in the calculations. If none is given, assume 8%.
2. Convert all annual payment series (the same value every year) to a present day value
(a) Look up P/A factor based on the interest rate and number of payments in the "Annual to Present " chart (handout)
(b) Multiply the annual payment amount by the P / A factor. This is the present value of that annual series so write this value at time 0 on the cash flow.
3. Convert all future payments into present day values
(a) Look up P/F factor based on the interest rate and number of years in the "Future to Present" chart (handout)
(b) Multiply the future value amount by the P / F factor. This is the present value of that future payment so write this value at time 0 on the cash flow.
4. Add up all of the cash flow at time 0. This is the Present day value of all of the cash flow. (If it is a good investment it should be positive!)

- For example, in the cash flow in figure 1 :

1. You have $\$ 20 \mathrm{k}$ at time 0 . This is already in the present so leave it alone.
2. The series of $\$ 6 \mathrm{k}$ per year for 5 years is an annual series so look up the P / A factor in the table for 8% and 5 years and you find 3.9927. So multiply $-\$ 6000 * 3.9927=-\$ 23,952$.
3. Now add (or subtract) all the values at time $0: \$ 20000-\$ 23952=-\$ 3952$.

So the present day value of this loan for you is $-\$ 3952$ which, of course, means the bank is making money off of the loan.

- From figure 2 we can do a similar analysis.

1. Convert the annual income of $\$ 1200$ over 10 years by finding the P / A factor in the table under 8% and 10 years $=6.7101$. So the Present value of the series is $\$ 1200 * 6.7101=\$ 8053$.
2. Now consider the present value of the cost to replace the inverter. It is a Future value of $\$ 2000$ in 5 years, so look up the P / F factor in the F to P table $=0.6806$. So multiply $-\$ 2000 * 0.6806=-\$ 1361$.
3. Now you have all values in the present, so sum them up: $-\$ 10000+\$ 8053-\$ 1361=-\$ 3308$.

So, as an investment, this would lose $\$ 3308$ and is therefore not a good investment from a purely financial perspective.

A final note: If you get confused whether you should multiply or divide by the factor in the table, remember that money $A L W A Y S$ grows with time if the interest rate is positive. So if you move a Future value to the present it must get smaller. The Present value of an Annual series must always be less than the sum of the payments.

Homework

I am thinking about buying a new car and can't decide if I should get the new Corvette ZR1, the new Prius Hybrid or a Volkswagon Diesel. For the following questions, assume an 8% interest rate and a gas price of $\$ 3.40$ per gallon and diesel costs $\$ 4.10$ per gallon.

Problem 1

The Corvette costs $\$ 70,000$ and uses an estimated 50 gallons of fuel each month for my commute to work.

1. How much money per year will I spend on gas?
2. Draw a cash flow diagram for the purchase of the Corvette (if I pay in cash) and the fuel cost.
3. What is the total Net Present Value of the car and gas.

Problem 2

The Prius costs $\$ 30,000$ and uses an estimated 10 gallons of fuel each month for my commute to work.

1. How much money per year will I spend on gas?
2. Draw a cash flow diagram for the purchase of the Prius (if I pay in cash) and the fuel cost.
3. What is the total Net Present Value of the car and gas.

Problem 3

The Volkswagen Rabbit Diesel costs $\$ 20,000$ and uses an estimated 12 gallons of diesel each month for my commute to work.

1. How much money per year will I spend on fuel?
2. Draw a cash flow diagram for the purchase of the Rabbit (if I pay in cash) and the fuel cost.
3. What is the total Net Present Value of the car and Fuel.

Problem 4

Which car should I buy (and why)?

